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This note considers the question of why some convex quadreatic
prograemning algorithas fail end others succeed when applied to nonconvex

quasi-convex quadreztic programs. Several slgorithms are identified as
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beirg capable of solving quasi-convex guadratic programs using 2nly &
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finite number of arithmetic and logical operations. These aigorithms
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are all primal feasible, pivot algorithms.
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Recent papers by Martos (1971) and Cottle and Ferland (1970a,b)
examine the class of quadratic functions that are quasi-convex and
pseudo-convex on the nonnegative orthant. Ferland (1971) studies the
class of quadratic functions that are quasi-convex and pseudo-convex on
convex sets possessing non-empty interiors.

A quadratic program of the form

(1n) minimize @(x) = ¢'x +'% x"Dx
(1v) subject to Ax 2D
(1c) x 20,

where the function 9{x) is quasi-convex (pseudo-convex) on the set of
"primal" feasible points X = {x € R® : Ax 2 b, x 2 0} is called & qussi-
convex. {pseudo-convex) quedratic program. Thexe is no 1loss in generality
in assuming D is a symmatric matrix and this is assumed through this

paper. The Kuhn-Tucker conditions for (1) can be stated in the form

(2e) u= c+Dx - Aly
(2b) v = <b + Ax

(2¢c) T u=20,x20, v20,y20
(2a) n'x = 0. v'y = 0.

Specializing results obtained by Mangasarian (1965, or see 1962) to the
case of a pseudo-convex quadratic program gives the following theorem.
Theorem 1. If the point (0,X,V,¥) satisfies the Kuhn-Tucker
conditions of a pseudo-convgx quadratic program, then the point % iz a

solution of the quadratic progranm.
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For completeness, some of the properties of general quasi-convex
‘ and pseudo-convex functions will b= repeated here. A more extensive
discussion of genera: quasi-convex and pseudo-convex functions may be
found in Mangasarian's (31969) recent book cn nonlinear programming and
recent results on these classes of functions can be found ir. Ferland
(1971).

The following statements are equivalent when ¢ is defined on a
convex set X:

(1) o is a quasi-convex function on the set X,

(1i) for any «. the set {x€ X : ¢(x) = o} is a convex set,

(131) ol + (l-a) x®) < maximum {q(x?), o(x2)] for x*, ¥ € X,

Osgs1l, and .

(iv) if o(x®) < 9(x?) snd ¢ ic a continucusly differentiable

SR S e A M RN AT B SN BT Borsa e BRI B L3 AN B B0 2 S T 2 AL o Dorrenm

function, then 7e¢(x?) (x®-x1) < 0.
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O

N

A contiruously differentiable function ¢ defined on a set X is pseudo-

ity Bt

] I

convex if for all x!, x® € X, Vo(x?) (x®-x!) 2 0 implies @(x®) 2 @(x?).

ks

P
a

If a function is continuously differentiable on a convex set X and it is

& convex function, then it is a pseudo-convex function on X; if it is

pseudo-convex on X, then it is quasi-convex on X.
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Quasi-convex and pseudo-convex guadratic functions are very closely

>

23 E

-': 3 R

) E related. Martos {1971, Theorem 3) showed that if ¢(x) = c¥x + 5 x™Dx is ‘é

X g not convex but is quasi-couvex on the nonnegative orthant (R};_) and the 3

3 &

3 metrix (27 g has no row of zeros, then o is pseudo-convex on the set _ %

. E i L&

e & i R: - {0}, which is the ronnegative orthant with the origin removed. After -3

E ¢ Martos cbtained this result, Cottle and Ferland {197Cb) proved the f %‘j

following theorem, which permits one to replace the origin. : %
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Theorem 2. If the quadratic function ¢(x) is not convex but is

Quasi-convex on the nonnegative orthant, then it is pseudo-convex on the

o s DL AN Y

nonnegative orthant provided c¢ # G.
Martos {1969) shows that when ¢ = O, ¢ can be pseudo-convex on R: only
if it is convex on R".

A reasonable computational test to determine if a quadratic function

Y Bt
R S
5

AL
et

is ¢uasi~convex on the nomnegetive orthant can be based on the following
theoren characterizing quasi-convex cuadratic fulctions given by Cottle
and Ferland (1970a).

Theorem 3. The quadratic function ¢@{x) = c¢"x + -;5 x"Dx is rot

convex, but is quasi-convex on R} if and only il

@ G
and :

(b) the matrix D, ) has only one negative eigenvalve.
c' O

The following result, also cue to ottle and Ferlard (19702), is the

L L S bR wd B e R b s et L A S ey L O B S M S e ML I e ot

' 3 besis for a finite sufficiency tust. A finite test is an algorithm
1
3 requiring orly a finite number of arithmetic and logical operations te

determine if an object (functinn) possesses a purticular property.

Theorea l&-._ A guadratic function is not convex but is pseudo-convex

ot 0) has negative leading principal minors.
4

The satisfactions of conditions (&) and (b) of toth theorems 3 and

f on R:_ if -~
3 (a) (D 5) S ©
et O
- ig; and
- = N
4 (b) the matrix (D ¢

L can be determined using standard techniques from numerical linear

algebra. These techniques require only a finite number of arithmetic
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operations., Since it is possible to identify many pseudo-convex and
quasi.convex quadratic programs using a finite test, one would like to
solve them using a finite algorithm, many of which are available for
solving convex Quadratic programs., Some of these algorithms may fail
when appl®ed to a pseudo-convex quadratic program. Martos (197%) shows
by example thst Wolfe's simplex method for quadratic programming (1959)
is such an algorithm and identifies the Frank-Wolfe algorithm (1956,
Section 6) as ar algorithm that can be used to solve pseude-convex
quadratic programs when the set X of primael feasible points is ccmpact.
However, the Frank-Wolfe algorithm is not finite. After giving an
example of the use of the Frank-Wolfe algoritim to solve a pseudo-convex
aunadratic rogram Martos makes the following statement.
"Challenged by the finiteness of many convex quadratic

programming methods we, of course, made several attempts to

find a finite methed for the quasi-convex case, t70. With

no sueccess in this direction one shouid address himself to

the question: how and why might a method faii? In this

respect we have only a partial answer to the first part (how?)

of the question. To this end, we can show a counterexemple,

where the application of the well Imown qQuadratic simplex

method of Wolfe demonstrates how this one can fail. ther
methods mey presumabiy fail otherwise."

Contrary to the impression one would have after reading the above
statement, there exist several finite algorithms for solving pseudo-
convex qQuadratic programs. The oidest and best known of these methods
ic Beale's quadratic programming algorithm (1955, or see Beale (1559)
or (1967)). Another method is Ritter's algorithm for finding a local
oinimum (1966, also see Cottle and Mylander (1970)). Two more recent
methods are thiose by Keller (1969) and Mylander (2971).

Keller's method (1969)'is a modification of the Dantzig-Cottle
principal pivoting slgorithm for solving linesr complementarity

4




problems (1967, also see Cottle (1968)). The Kuhn-Tucker conditions for

a quadratic program are a special case of a linear complementarity

problem. Hence Keller's method@ is applied to the Kubn-Tucker conditions

stated earlier in (2). If necessary, a Phase I procedure is performed

to find a peint satisfying (2a,b) such that x 2 0 and v 2 0. That is,

e

a primal feasible solution is foiind. In Phase II, primal feasibility
is maintained while a soluticn satisfying all the Kuhn-Tucker conditions

is sought After finding a primal feasible point, the algoritihm can

7
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*::‘ termirate in only two ways—either with a solution to the Kuhn-Tucker ;
'Kg conditions or with an indication that the objective function ¢ is not
‘.‘ bounded from below on the feasible set.

& Mylander's algorithm (1971) is a modification of Iemke's slgorithm 4
‘ = (1965, 1968) for solving iinear complementarity problems. As with
Keller's algorithm, a Phase I procedure is first applied, if necessary, 3
e to find a primal feasible point. Then, in what is called the "positive 12’2—
: phese," the covering vector prescribed by Iemke (1965, 1968) is repleced ’2
: witl ~ne that has positive entries covering only the u and y variabl:: E

i that are basic in (2¢,0). The other elements of the covering vector

s
"

are ze:ro. Using this type of covering vector ensures that the rules o

Ot TN
LA VGO

Iemke 's algorithm generate primal feasible peints at each step. The
positive pnase terminates either with an indication that the objective

function @ is not tounded below on the primal fecsible set X or witn

Y

& solution tc the Kuhn-Tucker conditions. Mylander's modification of

™ ‘mwéw‘ e LRI Nt Y
) wﬁ‘,m:mmﬁ%;%%mﬂwémmﬁiﬁmxmm

) lemke's alsv has a negative phase which is used to seek edditional

solutions of the Kuhn-Tucker conditions of nonconvex quadratic programs,
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but the use of the negative phase is not necessary in processing a
convex or pseudo-convex quedratic program.

For a pseudo-convex program any solution of the Kuhn-Tucker conditions
gives a solution to the programming problem. For quadratic programming
problems involving the minimizatiocn of functions that are quasi-convex
bat not pseudo-convex on the nonnegative orthant the point x = 0, if
feasible, is a stationary point. Thet is, there exist u, v, y, with
x = 0 satisfying the Kuhn-Tucker conditions {2). In this case x = 0 is
either a saddle point or a maximizing poin%. Theorem 2 indicates this
case can occur only whea ¢ = O, Algorithms that wilil solve pseudo-convex
programs can be used to solve quasi-convex programs by perturbing the ¢
vector by a smail amount; some of the zero elements of ¢ being replaced
by small negative numbers.

The common feature of all the algorithms listed earlier for solving
quasi-convex quadratic programs is they ure primal feasible algorithkms.
They require a starting point in the feasible set X and generaste points
in the feasible set X.

Another common feature of the finite algorithms for quasi-convex
quadratic programming is they are pivot algorithms that maintain basic
golutions to & set of linear equations. With the exception of eale's
elgorithm, the linear equations are the Kunn-Tucker equations (2a,b) or
an augmentation of the Kuhn-Tuckcr eguations. These algorithms work by
entering a non-basic variable into the basis in place of a basic variahle

in seekirg to satisfy all the Kuhn-Tucker conditions. Pivot algorithms

for quadratic programming can terminate in only one of four ways:

(3) with a solution to the Kuhn-Tucker conditions,
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(11) with a non-basic variable srecified to enter the basis,
but no basic variable specified to jeave the basis, this is
called termination on a ray,

(1ii) neither member of the (basic variable, non-basic variable)

interchange bteing specified by the rules of the algorithm,

N ‘4;:.-:w"ﬁ

3
=

T
-
=

L

or
(iv) the specified pivot element specified by a basic variable
and a non-basic variable to be interchanged being of the
wrong sign or zero.
The second case, termination on a ray, corresponds to the form of

termination occurring in the simplex method for linear programming when

e B e R S P R A M A M S O T NN b

there is an unbounded solution. That is, the non-basic variable can be ;g
2
assigned any positive value and all the basic varizbles remain nonnegative. &
“H

To determine if a pivot algorithm for convex gquedratic programs can
be used to solve quasi-convex quadratic programs it is necessary tc sheow
that the third and fourth forms of termination cannot occur and that the
second form of termination, termination on 2 ray, indicates either the
objective function is unbounded below on the primal feasible set X or the
set X is empty. If the algorithm works with primal feasible points,
then termination on a ray must be interpretable as an indication that
the objective function is not bounded from below on X.

Beale's algorithm is an adeptation of the method of steepest

A L B R A SN R s LB

descent that exploits the fact that the derivatives of a quadratic
function are linear. If it terminates on a ray, the objective must go
to minus infinity on that ray. When it terminstes because the rules do

not specify & pivot and if the basic solution at hand is nondegenerate,

7

[N
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S then there is no small feasible move that will decrease the objective

f function. Farkas' lemma then can be used to show the existence of values
;t for u and y sstisfying the Kuhn-Tucker conditions. The forth form of

) termination cannot arise in Beale's algorithm.

The principal pivot algorithm of Dantzig and Cottle canrot be

A PR
ORI 4 OSP4

counted on to solve quasi-convex programs because termination on a ray

. cannot be interpreted for this class of problems. Also, this algorithm .§
ig . is predicated on the expectation the main diagonal of the matrix of %
fﬁ i‘ coefficients of the non-basic variables, when on the same side of the 3%
i% equality sign as the constant column, contains only nonnegative elements :;
'f: . after the completion of a major cycle. Howaver, Keller has modified %

. the rules cf the principal pivot algorithm for linear complementarity {%
; problems arising from the Kuhn-Tucker conditions of quadratic progrems :§

to handle the case of negative elements and to find and maintain the

LRI

Teasibility of the primal varisbles. Using the fact that only primal

feasible points are generated he is able to show terminatior on a ray

e

=
=

R
=

indicates the objective function is not bounded below on X without

ot TTRELY
TR

B et T G
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any assumption on the nature of the quadratic form of the objective

AR T O

A z
1 function. <
t: E
’E Iemke's algorithm makes no structural assumption relative to the %
=
2 matrix of coefficients of the linear equations to which it is applied. 5

©
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It cen be applied to the Kuhn-Tucker equations arising from a non-

by

convex quadratic progrem and termination will occur after a finite

o ;v«}.r;;r T
A it

number of pivots either on a ray or with a solution to the Kuvhn-Tucker
conditions. However, for nonconvex quadratic programs termination on a

ray cannot be interpreted. Mylander (1971) gives an example of Iemke's
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R ¢

= algorithm terminating on a rasy for a quasi-convex quadruatic program

1%6 possessing a finite solvtion on a compact feasible set X, Mylander’s
i%; nodification of Iemke's algorithm makes it possitle to guarantee that

& solution to Kuhn-Tucker cenditions resuvliing from a quasi-conver
nrogram will be found or if termination on a ray occurs then the objec-
tive function is not bounded from below on X.

Ritter's algorithm can be viewed as an extension of Houthakker's
quadratic prograrming aigorithm (1900, also see van de Panne and Whinston
(1966)) to produce local minima for nonconvex Quadratic programs.
Houthakker's algorithm can fail when applied to 2 quasi-convex program

decause a pivot elzment expected to be positive might r-% be positive.

- If the problem is o convex ﬁuadratic program it can be proved that the
- § ) required pivotal element must always be positive (van de Panne and

-1

Whinston (1966)). Ritter extended the algcrithm by providing additional

i s

rules to handle the case of a noapcsitive @lement that is the desired

pivot element in Houthakker's algorithm.

IR

B In summary, any programming algorithm counverging to a point where
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E the Kuhn-Tucker conditions are satisfied or giving an indication of the
cccurrence of an objective function that is unbounded belsw on the primal
feasible set X can be used to solve quasi-convex quadratic programs.

Such an algorithm must not require the assumption that the quediatic form

be positive semi-definite to prove that the algorithm does not stop

MU A8 (i d e

prematurely. Nor can it make use of the assumption the obtjective

function ie convex on the feasible set to prove that termination on a

| ate

ray Indicates there is no solution to the Kuhn-Tucker conditions. There

are several known finite guadratic programming algorithms meeting these
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requirements and they can be used to process gquasi-convex auadratic
programs. The common features of the xnown finite algorithms that can
be used to solve quasi-convex programs are that they sre primal feasible,
pivot algorithms. g
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